skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nyavor, Obed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT This study presents a novel, bio‐based polymer composite derived from tapioca starch and reinforced with jute fibers, designed for non‐load bearing structural applications. The developed composite demonstrated significant thermal stability, with a single decomposition reaction observed above 300°C via TGA, surpassing many synthetic polymers. DSC analysis revealed a glass transition temperature (Tg) of 69.55°C and notable thermal energy storage capability. Mechanical characterization, including three‐point bending, tensile, and compressive tests, confirmed effective fiber wetting and a tensile strength of 9 MPa for the composite. Furthermore, the composite exhibited mild electrical conductivity of 3.62 × 10−7 S/m. Structural characterizations (SEM, XRD, FTIR) revealed the presence of an N‐H bond, a functional group common in conductive polymers, suggesting its potential as a mild conductor. Density functional theory simulations provided further insights into the biopolymer's molecular structure. This research highlights the promising potential of tapioca starch composites for various engineering applications, particularly as sustainable packaging materials. 
    more » « less